ELECTRICAL MODELS FOR THE SOLUTION OF INVERSE
NONSTEADY HEAT-CONDUCTION PROBLE MS

V. E. Prokoflev : UDC 536.202:681.332

Analog methods proposed earlier for the solution of inverse nonsteady heat-conduction prob-
lems on RC networks are further elaborated with allowance for convective, contact, and
radiative heat transfer.

Interest has heightened lately in the subject of inverse heat-conduction problems, as evidenced by the
publication of vast numbers of papers by Soviet and foreign authors on the solution of those problems. Along
with the analytical methods discussed, for example, in [1, 2], mathematical modeling methods are used to
great advantage for the solution of inverse problems. The applicability of electrical models for the solution
of inverse problems becomes particularly evident in situations where, besides determining the boundary
conditions from a known temperature, it is also required in the course of solution to estimate the influence
of the accuracy with which the initial data are specified and of various kinds of nonlinearities in the domain -
of investigation and in the boundary conditions on the accuracy of the problem solution.

In [3] and in other papers by Kozdoba procedures based on the trial-and-error method are described
for the solution of inverse nonsteady heat-conduction problems on R networks. The laborious manual
selection of the boundary conditions for the solution of steady-state problems on R networks is eliminated
by the use of an electromechanical servo system of the type discussed, for example, in [4].

At the present time RC networks are effectively used to obtain a time-continuous solution of direct
nonsteady heat-conduction problems. As shown in [5-7], these models can be used to solve not only linear,
but also nonlinear problems involving variable and nonlinear boundary conditions, even with regard for
convective, contact, and radiative heat transfer. For the latter purpose the models must be complemented
with special-purpose devices whose operation is based on the electronic simulation method. The use of
this method in passive analog models makes it possible in generating the boundary conditions to simulate
the various thermophysical coefficients involved in the boundary conditions by voltages. The author has also
indicated [5] the possibility of using the electronic simulation method for the solution of inverse problems,
and in [8] has discussed the design principles of devices for the solution on RC networks of linear and non-
linear inverse nonsteady heat-conduction problems subject to boundary conditions of the second and third
kind when boundary conditions of the first kind are given. The use of RC networks for the solution of in-
verse nonsteady heat-conduction problems has made it possible, on the one hand, to enhance the efficiency
of modeling methods and, on the other, to curtail the labor involved in the solution of the problems in ques-
tion by those methods. For example, in the solution of inverse problems on RC networks it is'no longer
necessary to map the nonsteady temperature field over the entire modeling domain, as is unavoidable, for
example, with the use of R networks.

Below we extend analog methods for the solution of inverse problems to the case of contact and radia-
tive heat transfer. The initial data in this case are the temperatures of points, not only on the surface,
but also interior to the investigated body.

In general, the solution of an inverse nonsteady heat-conduction problem is reduced to the determina-
tion of the conditions of external energy transfer between the body and the medium on the basis of the known
temperatures Ty(r) at certain interior points in the volume of the body. The external input of energy can
be convective, conductive, or radiative. Consequently, depending on the type of boundary conditions, the
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Fig. 1. Block diagram of the IPS device for the solu-
tion of inverse problems with variable boundary con-
ditions of the second kind (a) and third kind (b).

solution of the inverse problem must yield the temperature Tg(r) of the surface and the heat flux qg(7)
across it, as well as the values of the heat-transfer coefficients ¢, thermal contact resistances Rg, and
emigsivities €. Concurrently with the determination of the boundary conditions, as a rule, the temperature
field of the entire body is reconstructed from measurements of the temperature at certain points thereof [1].

For the solution of inverse problems on analog computers, regardless of the method of solution chosen
the model structurally represents a closed control system in which the controlled object is the network ana-
log of the investigated body. The input parameters for the system in this case are the voltages Uy;(TM) re-
presenting the electrical analogs of the temperatures Tvi (7) at certain points of the body, and the output-
parameters are the unknown currents, resistances, and voltages, i.e., the analogs of the heat fluxes and
coefficients entering into the boundary conditions. If the trial-and-error method is used for solution [3],
then the closed control loop of the given system includes an operator, who manpually inspects the boundary
conditions on the basis of an analysis of the modeling results until the voltages at the test points of the net-
work model comply with the specifications. Of course, nonsteady problems can be solved by the given
method only on R networks with quantization of the time variable.

For the solution of inverse problems on RC networks the system is assured of high performance by
the inclusion in the closed control loop of high-speed automatic inverse-problem solvers (IPS), which,
operating on a continuous-time basis without operator intervention, select the boundary conditions that will
ensure the specified nonsteady temperature distribution in the body [8].

If it is required in the course of solution to detexrmine only qg(7) and Tg(7), the IPS network is fairly
simple, including a differential amplifier (DA) with a high gain K, and a controlled current stabilizer (CCS)
(Fig. la). In this network the known voltage Uy(Ty) simulating the specified temperature Ty(7) is re-
produced by the function generator (FG) and is delivered to one input of the DA. The second input of the DA
is connected to an internal point of the RC network, where the voltage U'V(TM) must vary according to the
same law as Uy(Typ). The DA output voltage Ug = K, (Uy—Uy) is delivered to the input of the current stabi-
lizer, where it is transformed into a proportional current Ip = KiUg. Inasmuch as the system is closed,
for a large gain K, — « the DA minimizes the voltage difference between Uy and Uy in such a way as to
reduce the system errorU = Uy~Uy, to zero. Since the voltage Uy is determined solely by the current I
- flowing in the model from the CCS output, the equality of Uy and U{, naturally indicates that the current Ip
and so the voltage Uq are proportional to the unknown thermal flux qgg.

If the temperature T4(T) is used as the initial data, the solution of the problem is simplified, because
now the flux qg(7) can be determined simply by measuring the current I (7y) flowing in the model directly
from the FG output.

In situations where the heating of the body is induced by boundary conditions of the third kind, the
knowledge of qg(7) is not sufficient for the specification of uniform boundary conditions at different points
on the surface of the body. This is so because for equal values of the temperature Ty, (T) of the surrounding
medium and of the heat-transfer coefficients o (7) the heat flux qg(7T) is unequal at different points of the body
because of the differences in Tg(7). Consequently, for the solution of inverse problems with boundary con-
ditions of the third kind it is advisable to determine a(7) along with q4(7). This can be done if the known
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Fig. 2. Block diagram of a general-purpose device for the
analysis of convective, contact, and radiative heat-{ransfer
processes. ‘

network specifying the boundary conditions of the third kind on the model includes as the boundary resistor
R simulating o an inertialess controlled resistor CR, which receives its control sighal from the DA (Fig.
1b). The CR can be any unipolar element capable of varying the internal resistance continuously and over

a wide range as a function of the control voltage Uy. Because negative feedback is present in the IPS net-
work, nonlinearity of the CR transformation characteristic does not affect the accuracy of the inverse prob-
lem solution. On the other hand, that nonlinearity renders more complex the measurement and principal
reproduction of the required value of R, at different points of the body. These problems can be eliminated
by using linear CR for Ry, for example linearized field-effect transistors [9] or pulse-time controlled
resistances [10].

The network discussed above can be used to solve inverse problems for both convective and contact
heat transfer. In the latter case the FG; reproduces a voltage simulating the temperature Te, (7) of the con-
tact surface of one of the bodies as determined either experimentally or by reconstruction of the tempera-
ture field by the model solution of the inverse problem,- while the FG, reproduces a voltage Uy(T)M) pro-
pordienal to the known temperature at a certain point of the second body. The model solution of the problem
determines the time dependence of the quantity R (Tyy), which in the given case is the electrical analog of
the nonsteady thermal contact resistance R, (T) of two plane surfaces. Knowing Rq(7), one can then deter-
mine the dependence of R, on the temperature of the contact zone.

As mentioned, in the solution of nonsteady heat-conduction problems with time-variable and nonlinear
boundary conditions on RC networks it is advantageous to use devices designed on electronic simulation
principles. Electronic simulation forms the basis of operation of the general-purpose device described
below for the specification of boundary conditions ("boundary-condition generator," BCG), which can be
used with RC networks to solve both direct and inverse problems for convective, contact, and radiative heat
transfer. This device can also be used for the specification of nonlinear boundary conditions in cases where
the nonlinear heat-conduction equation can be reduced by the Kirchhoff integral transformation to a form
suitable for modeling on RC networks [6, 8].

The proposed BCG (Fig. 2) consists of an operational amplifier (OA) and controlled current stabilizer
(CCS8) connected in series and enclosed in a voltage feedback loop. The input signal to the device is the
voltage Uy (T)y) received from FG;, and the output signal is the current Ip(Ty) delivered to the end point of
the RC network from the CCS output. The OA in conjunction with the input resistors Ry, R, and the feed-
back-connected linearized field-effect transistor FET [9] are designed to sum the input signals U; and Us
and to linearly mulliply the resultant sum by a variable coefficient. In the solution of problems with
nonlinear boundary conditions the elements Ry and R, can be nonlinear or diode-controlled resistances with
a volt-ampere characteristic determined by the conditions of the problem [10]. The variability of the coef-
ficients involved in the boundary conditions can be accounted for by the appropriate time variation of the
control voltage U, delivered to the FET gate.

For the solution of inverse problems the BCG is augmented with a differential amplifier DA, which
minimizes the difference between the voltages Uy and Uy received at its inputs from the RC network and
FG,, respectively., The output voltage Uy of this amplifier is the solution of the inverse problem and, de~
pending on the problem type, simulates one of the thermophysical variables: @, R¢ or .
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For the investigation of convective heat transfer
o (1) [Tn(1) — T (9] = g5 (1) . (1)

the given device makes it possible, in solving the inverse problem, to determine @ (r) and qg(7) simultane~
ously. Here FG; is used to reproduce a voltage Uy, (7)) proportional to the temperature Ty, () of the medi-
um, and FG, reproduces a voltage Uy (Ty) proportional to the given temperature T(T).

Inasmuch as the IPS network includes a closed control loop, for a large value of K, > 1 the voltage
V(TM) of an internal point of the model, being determined by the current Ip(Typ), will be such that the dif-
ference between the voltages Uy, and Uy, tends to zero at every instant. Of course, the current Ip(Tpp and
so also the voltage Uq('rM) are proportional in this case to the heat flux qg(7) in (1), i.e.,

1 :
Uq (TM) = —k** IT (TM) =~ KqK'qu (T) (2)

On the other hand, when the condition Ry = Ry = const is satisfied, it is evident from the network that
the indicated voltage is equal to

Uq (T) = (Tw) [U (TM) —U (TM) (3)

oa U
where Ky = 1/R1KgKyt is the OA conversion coefficient, in volts.

If we transform from electrical to thermal quantities, we infer from the equality of Egs. (2) and (3)
that in convective heat transfer the voltage U,(7y) simulates the heat-transfer coefficient a(7) in (1), i.e.,

U, (x,) = KoaKy  Tm(® —Ts(m K, a_ir)_ ] 4)

Kth qs (T)

It is easily shown that in the investigation of contact heat transfer

%, () — Te, @] = g, (%) ()

.o
the device makes it possible, in solving the problem, to determine the physical quantities Rs(Tc) and qq(7),
whose electrical analogs in the model are, respectively, the voltages Uy (Tyy) and Ug(TM). Here FG1 is
used to model the surface temperature Tc (r) of the first body, and FG, the known temperature Ty(7) at
some point in the volume of the second body

In the solution of inverse problems for radiative heat transfer the emissivity € can be determined at
every instant from the Stefan—Boltzmann equation

&(T) 0, [Tn(1) — T (0] = ¢, (%). (6)

For the modeling of the nonlinear equation (6) the network of the device incorporates as the elements R; and
R, nonlinear resistances with volt-ampere characteristics of the form I =aU?% They make it possible to
eliminate special nonlinear transducers [6, 8] and to combine the operation of nonlinear transformation of
the voltages U; and Ug with the summation operation. Itis readily shown that the voltage Uqf{Typ in this
case is equal to

lyﬁ’](rm) - U43<TM)A (7)

U, (x) = K )
L S A ()

where K, = a/KpKft.

We have shown earlier that for a large value of K, the voltage U (TM) is proportional to the heat flux
qg{T) (2). In the solution of inverse radiative heat-transfer problems, therefore the voltage U, (Ty) simu-
lates the emissivity € in (6), because

_ © ot 40\ i

The devices discussed above are made up of typical analog elements and can therefore be implemented
on existing models, such as the general-purpose simulator USM-1, by a slight readjustment of their struc-
ture. The USM-1 comes with channels for boundary conditions of the first and second kind, as well as func-
tion generators [11], and these components can function as the amplifiers and current stabilizers in this
case.
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The accuracy of the solution of inverse problems depends in large measure on the accuracy with
which the initial data are specified, the levels of the criteria Bi and Fo, and the distance of the internal
points at which the temperature is known, from the surface of the body [1]. The latter condition is dictated
by the fact that objects with spatially distributed parameters are characterized by finite response and a
delay time that depends on the distance of the internal points from the surface of the body [12]. The pre-
sence of delay produces a-time shift on the part of processes on the surface and inside the body and, as a
result, instability on the part of direct methods for the solution of the investigated problems [13].

For the solution of inverse problems on electrical models by means of the devices described above
the accuracy of the solution is determined the round-trip gain of the closed feedback loop. Increasing this
gain, on the one hand, decreases the error of the solution and, on the other, induces excessive fluctua-
tions in the system or a general loss of stability, even when boundary conditions of the first kind are speci~
fied. But if the temperatures of internal points of the body are introduced as the initial data, the presence
of a delay in this case can diminish the model reproduction of the boundary conditions. Special measures
must be adopted, therefore, to correct the system so as to increase the accuracy of the final solution and
to improve its quality.

As the foregoing discussion implies, considerable importance attaches to the setting up of special in-
vestigations to determine the influence of the delay time, error in the specification of the initial data, the
values of Bi and Fo, and various kinds of nonlinearities on the accuracy of the electrical model solution of
inverse problems. The results of such investigations are of independent interest and are not discussed in
the present article. It is important to note that from the standpoint of automatic control theory inverse
heat-conduction problems are similar in their formulation to identification problems for objects with dis-
tributed parameters. The models used to solve these problems with a closed-loop network analog of the
object are equivalent in their properties to automatic control systems. It is logical, therefore, to draw
on the practicality of the methods of automatic control theory for the analysis of the results of the above-
indicated investigations, as well as in the analysis of the medel itself.

The solution of inverse problems by modeling methods is of interest not only from the thermophysical
standpoint, but also from the standpoint of automatic control theory for the synthesis of an automatic con-
troller that implements control of a distributed~parameter object according to a precalculated temperature
at some point of that object. The specified law in this case can correspond to, for example, the optimum
operational regime of the object. This law can be determined either by the mathematical tools of optimal
control theory for distributed-parameter systems [14] or by mathematical modeling methods {15]. The use
of a closed system for optimal control eliminates the obstructive influence of an unknown variable such as
the heat-transfer rate and to offset various random disturbances.

We note in conclusion that when the geometry of the investigated body is more complex and, accordingly,
the number of variables whose values must be determined by solution of the inverse problem increases, a
number of factors can render automation of the process of solution on RC networks inefficient. Chief among
these factors are the greater complexity of the solving algorithms and the concomitant complexity of the
hardware, as well as the increase in the solving time. It is sometimes more practical, therefore, to re-
place problem-solving hardware operating to satisfy the fixed conditions of the problem with an operator,
who intuitively decides the need for and the principle modes of modification of the executive program [16].
In this case, however, it is advisable to use RC networks for the solution of inverse nonsteady problems,
augmenting them with appropriate devices for representation of the results of the solution with simultaneous
appraisal of the qualify of the solution, along with BCG devices, which make it possible even in the case of
complex boundary conditions to execute the simple input and scanning of coeificients fed into them.

NOTATION

T is the temperature, °K;

dg is the heat flux density at the surface of a body, W/m?;

@ is the heat-transfer coefficient, W/m?*°K;

0, is the black-body emittance, equal to 5.67°10~% W/m*CK)%;
& is the black-body emissivity;

7T is the time, sec;

Fo is the Fourier number;

Bi is the Biot number;

U is the voltage, V;
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I
R
K

Ka

Kr

is the current, A;

is the resistance, 2;

is the CCS transfer constant, A/V;

is the conversion coefficient from qg to Uy, m?/A;
is the conversion coefficient from 7 to Tf;

Ka KoaKi/KqKr s the conversion coefficient from 1/a to Us, V- W/m*-°K;

is the conversion coefficient from T to U, V/°K;

KE = %aQ/QKTGO is the conversion coefficient from 1/¢ to Uy, V;

Kgt

Rl i

&

bkt
e

13.
14,

15.

16.

is the potentiometer (P) transfer constant;
is the conversion coefficient of the linearized FET, 1/Q-V.
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