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Analog methods proposed ea r l i e r  for  the solution of inverse nonsteady heat-conduction prob- 
lems on RC networks are further elaborated with allowance for convective, contact, and 
radiative heat t ransfer .  

Interest  has heightened lately in the subject of inverse heat-conduction problems, as evidenced by the 
publication of vast  numbers of papers by Soviet and foreign authors on the solution of those problems. Along 
with the analytical methods discussed, for  example, in [1, 2], mathematical modeling methods are used to 
great  advantage for the solution of inverse problems. The applicability of e lectr ical  models for  the solution 
of inverse problems becomes part icularly evident in situations where, besides determining the boundary 
conditions from a known temperature,  it  is also required in the course of solution to estimate the influence 
of the accuracy with wMch the initial data are specified and of various kinds of nonlinearities in the domain 
of investigation and in the boundary conditions on the accuracy of the problem solution. 

In [3] and in other papers by Kozdoba procedures based on the t r i a l - and-e r ro r  method are described 
for the solution of inverse nonsteady heat-conduction problems on R networks. The laborious manual 
selection of the boundary conditions for  the solution of steady-state problems on R networks is eliminated 
by the use of an electromechanical  servo system of the type discussed, for  example, in [4]. 

At the present  time RC networks are effectively used to obtain a time-continuous solution of direct  
nonsteady heat-conduction problems. As shown in [5-7], these models can be used to solve not only linear, 
but also nonlinear problems involving variable and nonlinear boundary conditions, even with regard for 
convective, contact, and radiative heat transfer.  For the latter purpose the models must be complemented 
with special-purpose devices whose operation is based on the electronic simulation method. The use of 
this method in passive analog models makes it possible in generating the boundary conditions to simulate 
the various thermophysieal coefficients involved in the boundary conditions by voltages. The author has also 
indicated [5] the possibility of using the electronic simulation method for the solution of inverse problems, 
and in [8] has discussed the design principles of devices for  the solution on RC networks of linear and non- 
linear inverse nonsteady heat-conduction problems subject to boundary conditions of the second and tMrd 
kind when boundary conditions of the f i rs t  kind are given. The use of RC networks for the solution of in- 
verse  nonsteady heat-conduction problems has made it  possible, on the one hand, to enhance the efficiency 
of modeling methods and, on the other, to curtail  the labor involved in the solution of the problems in ques- 
tion by those methods. For example, in the solution of inverse problems on RC networks it i s n o  longer 
necessary  to map the nonsteady temperature field over the entire modeling domain, as is unavoidable, for 
example, with the use of R networks. 

Below we extend analog methods for the solution of inverse problems to the case of contact and radia-  
tive heat transfer.  The initial data in this case are the temperatures of points, not only on the surface, 
but also inter ior  to the investigated body. 

In general, the solution Of an inverse nonsteady heat-conduction problem is reduced to the determina- 
t.ion of the conditions of external energy t ransfer  between the body and the medium on the basis of the known 
temperatures  Tv(r) at certain inter ior  points in the volume of the body. The external input of energy can 
be convective, conductive, or radiative. Consequently, depending on the type of boundary conditions, the 
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Fig. 1. Block diagram of the IPS device for  the solu- 
tion of inverse problems with variable boundary con- 
ditioas of the second kind (a) and third kind (b)~ 

solution of the inverse problem must yield the temperature Ts(T) of the surface and the heat flux qS(T) 
across  it, as well as the values of the heat - t ransfer  coefficients a,  thermal contact res is tances  R c, and 
emissivit ies e. Concurrently with the determination of the boundary conditions, as a rule, the temperature 
field of the entire body is reconstructed from measurements of the temperature at certain points thereof [1]. 

For  the solution of inverse problems on analog computers, regardless  of the method of solution chosen 
the model structural ly represents  a closed control system in which the controlled object is the network ana- 
log of the investigated body. The input parameters  for the system in this case are the voltages UviffM) r e -  
presenting the e lect r ica l  analogs of the temperatures  Tvi(T) at certain points of the body, and the output 
parameters  are the unknown currents ,  resis tances,  and voltages, i . e . ,  the analogs of the heat fluxes and 
coefficients entering into the boundary conditions. If the t r i a l - and-e r ro r  method is used for solution [3], 
then the closed control loop of the given system includes an operator,  who manually inspects the boundary 
conditions on the basis of an analysis of the modeling results  until the voltages at the test  points of the net- 
work model comply with the specifications. Of course, nonsteady problems can be solved by the given 
method only on R networks with quantization of the time variable. 

For  the solution of inverse problems on RC networks the system is assured of high performance by 
the inclusion in the closed control loop of high-speed automatic inverse-problem solvers (IPS), which, 
operating on a continuous-time basis without operator  intervention, select the boundary conditions that will 
ensure the specified nonsteady temperature distribution in the body [8]. 

If it is required in the course of solution to determine only qS(T) and TS(T), the IPS network is fair ly 
simple, including a differential amplifier (DA) with a high gain K a and a controlled current  stabilizer (CCS) 
(Fig. la). In this network the known voltage Uv(T1R) simulating the specified temperature Tv(T) is r e -  
produced by the function generator  (FG) and is delivered to one input of the DA. The second input of the DA 
is connected to an internal point of the t~C network, where the voltage Uv0" M) must vary  according to the 
same law as Uv(TM). The DA output voltage Uq = Ka(Uv--Uv) is delivered to the input of the current  stabi- 
l izer,  where it  is t ransformed into a proportional current  I T = KiU q. Inasmuch as the system is closed, 
for a large gain K a --- ~o the DA minimizes the voltage difference between U v and U v in such a way as to 
reduce the system e r r o r U  = Uv--U ~ to zero. Since the voltage U~ is determined solely by the current  I T 

I flowing in the model f rom the CCS output, the equality of Uv and U v naturally indicates that the current  I T 
and so the voltage Uq are proportional to the unknown thermal flux qs- 

If the temperature TS(T ) is used as the initial data, the solution of the problem is simplified, because 
now the flux qS(T) can be determined simply by measuring the current IT(TM) flowing in the model directly 
from the FG output. 

In situations where the heating of the body is induced by boundary conditions of the third kind, the 
knowledge of qS(T) is not sufficient for the specification of uniform boundary conditions at different points 
on the surface of the body. This is so because for equal values of the temperature Tm(T ) of the surrounding 
medium and of the heat-transfer coefficients a(T) the heat flux qS(T) is unequal at different points of the body 
because of the differences in Ts(T ). Consequently, for the solution of inverse problems with boundary con- 
ditions of the third kind it is advisable to determine 01(T) along with qs0"). This can be done if the known 
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Fig. 2. Block diagram of a general-purpose device for the 
analysis of convective, contact, and radiative heat- t ransfer  
proee sse s. 

network specifying the boundary conditions of the third kind on the model includes as the boundary res is tor  
R(~ simulating oL an inert ia less  controlled res i s to r  CR, which receives  its control signal f rom the DA (Fig. 
lb). The CR can be any unipolar element capable of varying the internal resistance continuously and over 
a wide range as a function of the control voltage U a. Because negative feedback is present  in the IPS net- 
work, nonlinearity of the CR transformation character is t ic  does not affect the accuracy of the inverse prob- 
lem solution. On the other hand, that nonlinearity renders  more complex the measurement and principal 
reproduction of the reqttired value of RoL at different points of the body. These problems can be eliminated 
by using linear CR for  Ra,  for  example linearized field-effect  t ransis tors  [9] or pulse-time controlled 
resis tances  [10]. 

The network discussed above can be used to solve inverse problems for both convective and contact 
heat t ransfer .  In the lat ter  case the FG1 reproduces a voltage simulating the temperature TCI(T ) of the con- 
tact surface of one of the bodies as determined either experimentally or by reconstruction of the tempera-  
ture field by the model solution of the inverse problem, while the FG 2 reproduces a voltage Uv(rM) pro-  
p o r ~  to the known temperature at a certain point of the second body. The model solution of the problem 
determines the time dependence of the quantity ReffM), which in the given case is the electr ical  analog of 
the nonsteady thermal contact resistance Rc(r) of two plane surfaces. Knowing RC(T), one can then deter-  
mine the dependence of R c on the temperature of the contact zone. 

As mentioned, in the solution of nonsteady heat-conduction problems with time-variable and nonlinear 
boundary conditions on BC networks it is advantageous to use devices designed on electronic simulation 
principles. Electronic simulation forms the basis of  operation of the general-purpose device described 
below for  the specification of boundary conditions ("boundary-condition genera tor , "  BCG), which can be 
used with RC networks to solve both direct  and inverse problems for convective, contact, and radiative heat 
transfer.  This device can also be used for the specification of nonlinear boundary conditions in cases where 
the nonlinear heat-conduction equation can be reduced bythe Kirchhoffintegral transformation to a form 
statable for  modeling on l=tC networks [6, 8]. 

The proposed BCG (Fig. 2) consists of an operational amplifier (OA) and controlled current  stabilizer 
(CCS) connected in ser ies  and enclosed in a voltage feedback loop. The input signal to the device is the 
voltage Ulff M) received from FG 1, and the output signal is the current  IT(rM) delivered to the end point of 
the RC network from the CCS output. The OA in conjunction with the input res i s tors  R 1, R 2 and the feed- 
back-connected linearized f ie ld-effect t ransis tor  FET [9] are designed to sum the input signals U 1 and Us 
and to l inearly multiply the resultant sum by a variable coefficient. In the solution of problems with 
nonlinear boundary conditions the elements R 1 and R 2 can be nonlinear or  diode-controlled resis tances with 
a volt-ampere character is t ic  determined by the conditions of the problem [10]. The variability of the coef- 
ficients involved in the boundary conditions can be accounted for  by the appropriate time variation of the 
control voltage U a delivered to the FET gate. 

For  the solution of inverse problems the BCG is augmented with a differential amplifier DA, which 
minimizes the difference between the voltage~ U v and U~ received at its inputs f rom the RC network and 
FG 2, respectively. The output voltage Ua of this amplifier is the solution of the inverse problem and, de- 
pending on the problem type, simulates one of the thermophysical variables: ~, B c or  e. 
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F o r  the inves t igat ion of convect ive heat  t r a n s f e r  

a (z) [Tm(~ ) - -  T s (z)] = qs (T) (1) 

the given device makes  i t  poss ib le ,  in solving the inve r se  p rob l em,  to de te rmine  a f t )  and qsf f )  s imultar ie-  
ously.  Here  FG 1 i s  used to reproduce  a voltage UmffM) p ropor t iona l  to the t e m p e r a t u r e  T m f f )  of the m e d i -  
um, and FG 2 r e p r o d u c e s  a voltage Uv(T M) p ropor t iona l  to the given t e m p e r a t u r e  Tv( r  ). 

Inasmuch  as  the IPS ne twork  includes a c losed control  loop, f o r  a la rge  value of K a >> 1 the voltage 
! 

UV(T M) of an in te rna l  point  of the model ,  being de te rmined  by the c u r r e n t  ITffM),  will be such that the di f -  
f e rence  between the vo l tages  U v and U v tends to ze ro  a t  e v e r y  instant .  Of course ,  the c u r r e n t  IT(rM) and 
so a lso  the vol tage Uqff  M) a r e  p ropor t iona l  in this ease  to the heat  flux qsf f )  in (1), i . e . ,  

_ 1 1  Uq (%,) - - -  ~ ( ~ )  ~ KqK~q s (T). (2) Ki 
On the o ther  hand, when the condition R 1 = R 2 = coas t  i s  sat isf ied,  i t  i s  evident  f r o m  the ne twork  that  

the indicated voltage i s  equal  to 

uq (~) = / ( o a - ~  (%) [u(~)  - Us (~,,)1, (3) 

where Koa = 1/R1KsKft is  the OA convers ion  coeff icient ,  in vol ts .  

If we t r a n s f o r m  f r o m  e l e c t r i c a l  to t h e r m a l  quantif ies,  we infe r  f r o m  the equal i ty  of Eqs.  (2) and (3) 
that  in convective heat  t r a n s f e r  the vol tage Ua0-M) Mmulates  the h e a t - t r a n s f e r  coeff icient  a ( r )  in (1), i . e . ,  

Uy ('c~) = K~ Tm('C) - -  Ts  (,c) - K~. ~ (4) 
K q K ,  qs ('c) cz ("c) 

I t  i s  e a s i l y  shown that  in the invest igat ion of contac t  hea t  t r a n s f e r  

[Tc, (x) - -  rc, (~)1 = q,, (T) (5) 

the device m a k e s  i t  poss ib le ,  in solving the p rob l em,  to de te rmine  the phys ica l  quant if ies  Rc(Te)  and qcff) ,  
whose e l e c t r i c a l  analogs  in the model  a re ,  r e spec t ive ly ,  the vo l tages  UaffM) and UqffM). Here  FG l i s  
used to model  the sur face  t e m p e r a t u r e  Te t f f )  of the f i r s t  body, and FG 2 the known t e m p e r a t u r e  Tvff)  at 
some point  in the volume of the second body. 

In the solution of i nve r se  p r o b l e m s  fo r  rad ia t ive  heat  t r a n s f e r  the e m i s s i v i t y  e can be de te rmined  at  
e v e r y  ins tant  f r o m  the Stefan--Bol tzmann equation 

(T) % [Z4m(X) - -  T '  s (~)1 - qs (~)" (6) 

Fo r  the model ing of the nonl inear  equation (6) the ne twork  of the device i nco rpo ra t e s  as  the e l emen t s  R 1 and 
R 2 nonl inear  r e s i s t a n c e s  with v o l t - a m p e r e  c h a r a c t e r i s t i c s  of the f o r m  I = aU 4. They make i t  poss ib le  to 
e l imina te  spec ia l  nonl inear  t r a n s d u c e r s  [6, 8] and to combine the opera t ion  of nonl inear  t r an s fo rma t io n  of 
the vol tages  U 1 and U s with the summat ion  operat ion.  I t  i s  r ead i ly  shown that the voltage UqffM) in this 
case  is  equal  to 

where I~oa = a / K p K f t .  

,4  U I ( T M )  ' 
U~ (~M) -=/(oa U~(%) -- (7) 

U a (%) ! 

We have shown e a r l i e r  that  fo r  a l a rge  value of K a the voltage UqffM) is  p ropor t iona l  to the heat  flux 
qs if) (2). In the solution of i nve r se  rad ia t ive  h e a t - t r a n s f e r  p r o b l e m s ,  the re fo re ,  the voltage UaffM) s i m u -  
l a tes  the e m i s s i v i t y  e in (6), because  

4 
a K t  T4m('O - -  Ts 4 (T) = K 1 

Ua (*~') = KJ(~ qs(T) ~ - U  (~) (8) 

The devices  d i scussed  above a re  made up of typical  analog e l emen t s  and cati t he re fo re  be implemented  
on exis t ing  models ,  such as  the g e n e r a l - p u r p o s e  s imu la to r  USM-1, by a s l ight  r e ad ju s tmen t  of the i r  s t r u c -  
ture .  The USM-1 c o m e s  with channels  fo r  boundary  conditions of the f i r s t  and second kind, as  well  as  func-  
tion g e n e r a t o r s  [11], and these components  can function as  the a m p l i f i e r s  and cu r r en t  s t ab i l i z e r s  in this 
case .  
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The accuracy of the solution of inverse problems depends in large measure on the accuracy with 
which the initial data are specified, the levels of the cr i te r ia  Bi and Fo, and the distance of the internal 
points at which the temperature is known, f rom the surface of the body [1]. The latter condition is dictated 
by the fact that objects with spatially distributed parameters  are character ized by finite response and a 
delay time that depends on the distance of the internal points f rom the surface of the body [12]. The p re -  
sence of delay produces a t ime shift on the par t  of processes  on the surface and inside the body and, as a 
result ,  instability on the par t  of direct  methods for the solution of the investigated problems [13]. 

For  the solution of inverse problems on e lectr ical  models by means of the devices described above 
the accuracy of the solution is determined the round-trip gain of the closed feedback loop. Increasing this 
gain, on the one hand, decreases  the e r r o r  of the solution and, on the other, induces excessive fluctua- 
tions in the system or a general loss of stability, even when boundary conditions of the f i rs t  kind are speci- 
fied. But if the temperatures  of internal points of the body are introduced as the initial data, the presence 
of a delay in this case can diminish the model reproduction of the boundary conditions. Special measures 
must be adopted, therefore,  to cor rec t  the system so as to increase the accuracy of the final solution and 
to improve its quality. 

As the foregoing discussion implies, considerable importance attaches to the setting up of special in- 
vestigations to determine the influence of the delay time, e r r o r  in the specification of the initial data, the 
values of Bi and Fo, and various kinds of nonlinearities on the accuracy of the electr ical  model solution of 
inverse problems. The resul ts  of such investigations are of independent interest  and are not discussed in 
the present  article.  It is important to note that f rom the standpoint of automatic control theory inverse 
heat-conduction problems are similar in their formulation to identification problems for objects with dis- 
tributed parameters .  The models used to solve these problems with a closed-loop network analog of the 
object are equivalent in their propert ies  to automatic control systems. It is logical, therefore,  to draw 
on the practical i ty of the methods of automatic control theory for the analysis of the results  of the above- 
indicated investigations, as well as in the analysis of the m~del itself. 

The solution of inverse problems by modeling methods is of interest  not only from the thermophysical 
standpoint, but also from the standpoint of automatic control theory for the synthesis of an automatic con- 
t ro l ler  that implements control of a dis t r ibuted-parameter  object according to a precalculated temperature 
at some point of that object. The specified law in this case can correspond to, for example, the optimum 
operational regime of the object. This law can be determined either by the mathematical tools of optimal 
control theory for dis tr ibuted-parameter  systems [14] or  by mathematical modeling methods [15]. The use 
of a closed system for optimal control eliminates the obstructive influence of an unknown variable such as 
the heat- t ransfer  rate and to offset various random disturbances. 

We note in conclusion that when the geometry of the investigated body is more complex and, accordingly, 
the number of variables whose values must be determined by solution of the inverse problem increases,  a 
number of factors can render  automation of the process  of solution on RC networks inefficient. Chief among 
these factors are the grea ter  complexity of the solving algorithms and the concomitant complexity of the 
hardware, as well as the increase in the solving time. It is sometimes more practical,  therefore,  to r e -  
place problem-solving hardware operating to satisfy the fixed conditions of the problem with an operator,  
who intuitively decides the need for and the principle modes of modification of the executive program [16]. 
In this case, however, it  is advisable to use RC networks for  the solution of inverse aonsteady problems, 
augmenting them with appropriate devices for representat ion of the results of the solution with simultaneous 
appraisal of the quality of the solution, along with BCG devices, which make it possible even in the case of 
complex boundary conditions to execute the simple input and scanning of coefficients fed into them. 

N O T A T I O N  

T is the temperature,  ~ 
qs is the heat flux density at the surface of a body, W/m2; 

is the heat- t ransfer  coefficient, W/m2"~ 
% is the black-body emittance, equal to 5.67" 10 -8 W/m2CK)r 

is the black-body emissivity; 
~" is the time, sec; 
Fo is the Four ier  number; 
Bi is the Biot number; 
U is the voltage, V; 
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I is the 
R is the 
Ki is the 
Kq is the 
KT- is the 
Ko~ = KoaKt/KqK r is the 
K t is the 

: V4aV4/ I%% is  the 
Kp is the 
Kft is the 

current, A; 
resistance, fi; 
CCS transfer constant, A/V; 
conversion coefficient from qs to Uq, m2/A ; 
conversion coefficient from ~- to TM; 
conversion coefficient from 1/~ to Ua, V. W/m 2" ~ 
conversion coefficient from T to U, V/~ 
conversion coefficient from 1/e to U a, V; 
potentiometer (P) transfer constant; 
conversion coefficient of the linearized FET, l / f t .  V. 
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